Reg. No. : \square

Question Paper Code : X 20445

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020
Fourth Semester
Electronics and Communication Engineering
EC 6403 - ELECTROMAGNETIC FIELDS
(Regulations 2013)

(Common to PTEC 6403 - Electromagnetic Fields for B.E. Part-Time
Third Semester - Electronics and Communication Engineering
Regulations 2014)
Time : Three Hours
Maximum : 100 Marks

Answer ALL questions

PART - A
(10×2=20 Marks)

1. Define line charge density.
2. Write the equation for Gauss law.
3. What are the boundary conditions for electric field at the perfect dielectricconductor interface?
4. Find the energy stored in the 20 pF parallel plate capacitor with plate.
5. Define magnetic vector and scalar potential.
6. A current of 3 A flowing through an inductor of 100 mH . What is the energy stored in inductor?
7. Define skin depth.
8. Define dielectric strength.
9. Define phase velocity.
10. Find the displacement current density for field $\mathrm{E}=300 \sin 10^{9} \mathrm{t} \mathrm{V} / \mathrm{m}$.
11. a) i) State and explain divergence theorem.
ii) Determine the electric flux density D at $(1,0,2)$ if there is a point charge 10 mC at $(1,0,0)$ and a line charge of $50 \mathrm{mC} / \mathrm{m}$ along y axis.
(OR)
b) i) Derive the expression for energy stored in an electrostatic field, in terms of field quantities.
ii) The two point charges $10 \mu \mathrm{C}$ and $2 \mu \mathrm{C}$ are located at $(1,0,5)$ and $(1,1,0)$ respectively. Find the potential at (1,0,1), assuming zero potential at infinity.
12. a) i) Derive the relationship between polarization and electric field intensity.
ii) Derive the capacitance of a spherical capacitor.
(OR)
b) i) Derive the boundary conditions of the tangential and normal components of electric field at the interface of two mediums with dielectrics.
ii) If two parallel plates of area $4 \mathrm{~m}^{2}$ are separated by a distance 6 mm , find the capacitance between these 2 plates. If a rubber sheet of 4 mm thick with $\varepsilon_{\mathrm{r}}=2.4$ is introduced in between the plates leaving a gap of 1 mm on both sides, determine the capacitance.
13. a) i) Magnetic vector potential $\vec{A}=\frac{-\rho^{2}}{4} \vec{a}_{z} \mathrm{~Wb} / \mathrm{m}$, calculate the total magnetic flux crossing the surface $\phi=\frac{\pi}{2}, 1 \leq \rho \leq 2 \mathrm{~m}, 0 \leq \mathrm{z} \leq 5 \mathrm{~m}$.
ii) $\vec{H}=3 \cos x \vec{a}_{x}+z \cos x \vec{a}_{y}$, A/m for $z \geq 0$ and $\vec{H}=0$ for $z<0$. This magnetic field is applied to a perfectly conducting surface in xy plane. Find current density on conductor surface.
(OR)
b) i) Obtain the expression for magnetic field intensity at the centre of a circular wire.
ii) At a point $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ the components of vector magnetic potential $\overrightarrow{\mathrm{A}}$ are given as $A x=4 x+3 y+2 z ; A y=5 x+6 y+3 z ; A z=2 x+3 y+5 z$. Find \vec{B} at point P.
iii) Explain the magnetic field intensity due to a straight wire.
14. a) From the basic laws derive the time varying Maxwell's equation and explain the significance of each equation in detail.
(OR)
b) i) State and derive poynting theorem.
ii) Explain the transformer emf using Faraday's law.
15. a) i) State and prove Poynting's theorem and give its physical interpretation.
ii) Derive Maxwell's equations for time varying fields.
(OR)
b) Derive the wave equation starting from Maxwell's equation for free.
PART - C
16. a) Summarize the concept of transformer and motional emf.
(OR)
b) Derive an expression of self-inductance and mutual inductance.
